

الصف الثالث الإعدادى

الفصل الدراسى الثانى

Algebra

Choose the correct answer: (1) $\frac{1}{x-3}$ (2) P (A) + P (B) **(3)** {0, 1} (4) (2, 1) **(5)** R **(6)** \mathbb{R} **2** (a) $n(x) = \frac{x}{x-2} \div \frac{x+3}{(x-2)(x+1)}$ Domain of $n = \mathbb{R} - \{2, -1, -3\}$ $n(x) = \frac{x}{x-2} \times \frac{(x-2)(x+1)}{x+3}$ $n(x) = \frac{x(x+1)}{x+3}$ **(b)** y = (1 - 2X)(1) X + 2y = 5(2) By substituting (1) in (2) $\mathcal{X} + 2(1 - 2\mathcal{X}) = 5$ $\mathcal{X} + 2 - 4\mathcal{X} = 5$ -3X = 3X = -1Substitute in (1) y = (1 - 2(-1))y = 3 $S.S. = \{(-1, 3)\}$ **3** (a) $P(A - B) = P(A) - P(A \cap B)$ P(A - B) = 0.7 - 0.3 = 0.4

(b)
$$n(x) = \frac{x(x+1)}{(x-1)(x+1)} - \frac{x+5}{(x+5)(x-1)}$$
 factorize
Domain of $n = \mathbb{R} - \{1, -1, -5\}$
 $n(x) = \frac{x}{(x-1)} - \frac{1}{(x-1)}$ simplify
 $n(x) = \frac{x-1}{(x-1)}$ subtract
 $n(x) = 1$ simplify

factorize

switch to multiplication simplify

4 (a)
$$a = 1, b = -4, c = 1$$

 $x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-4)\pm\sqrt{(-4)^2 - 4(1)(1)}}{2(1)}$
 $x = \frac{4\pm\sqrt{12}}{2} = 2 \pm\sqrt{3}$
 $x = 2 + \sqrt{3} = 3.73, x = 2 - \sqrt{3} = 0.27$
S.S.= { 3.73, 0.27 }
(b): $\because n_1(x) = \frac{2x}{2x+6} = \frac{2x}{2(x+3)} = \frac{x}{x+3}$
 \because The domain $n_1 = \mathbb{R} - \{-3\}$
 $\because n_2(x) = \frac{x^2 + 3x}{x^2 + 6x + 9} = \frac{x(x+3)}{(x+3)(x+3)} = \frac{x}{x+3}$
 \because The domain $n_2 = \mathbb{R} - \{-3\}$
 $\because n_1(x) = n_2(x)$, domain of n_1 = domain of n_2
 $\therefore n_1 = n_2$
5 (a) (1) $n(x) = \frac{x-2}{x+1}$
 $n^{-1}(x) = \frac{x+1}{x-2}$
the domain of $n^{-1} = \mathbb{R} - \{-1, 2\}$
(2) $n^{-1}(3) = \frac{3+1}{3-2} = 4$
(3) $\because n^{-1}(x) = \frac{x+1}{x-2}$
 $\therefore \frac{x+1}{x-2} = 2$
 $2(x-2) = x + 1$
 $2x - 4 = x + 1$
 $2x - x = 1 + 4$
 $\therefore x = 5$
(b) $x - y = 1$ (1)

b)
$$x - y = 1$$
 (1)
 $x^2 - y^2 = 25$ (2)
Substitute (1) in (2)
 $(x + y) = 25$ (3)
By adding (1) and (3)
Substitute (1) in (2)
 $2x = 26$
 $x = 13$
Substitute in (1)
 $13 - y = 1$
 $y = 12$
S.S = {(13, 12)}

Choose the correct answer: (1) $\{0,1,-1\}$ (2) $\{-3,3\}$ (4) $\mathbb{R} - \{0,1,-1\}$ (5) $\{(3,3),(-3,-3)\}$ $(3) \mathbb{R} - \{2, -5\}$ $(6) \{-5, 5\}$ **2** (a) (1) P (A \cap B) = $\frac{2}{6} = \frac{1}{3}$ (2) P (A – B) = $\frac{1}{6}$ (3) P (A^{*}) = $\frac{3}{6} = \frac{1}{2}$ **(b)** $n(x) = \frac{x-3}{(x-3)(x-4)} - \frac{4}{x(x-4)}$ factorize Domain $n = \mathbb{R} - \{3, 4, 0\}$ $n(x) = \frac{1}{(x-4)} - \frac{4}{x(x-4)}$ simplify $n(x) = \frac{x}{x(x-4)} - \frac{4}{x(x-4)}$ common denominator $n(x) = \frac{x-4}{x(x-4)}$ subtract $n(x) = \frac{1}{x}$ simplify **3** (a) a = 3, b = -5, c = -4 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-4)}}{2(3)}$ $x = \frac{5 \pm \sqrt{73}}{6}$ $x = \frac{5 + \sqrt{73}}{6} \approx 2.26$, $x = \frac{5 - \sqrt{73}}{6} \approx -0.59$ $S.S. = \{2.26, -0.59\}$ **(b)** : The domain of the n(x) is $\mathbb{R} - \{2, 3\}$ \therefore *n*(2) and *n*(3) are undefined $\therefore n(2) = \frac{4}{2^2 + 2a + b}$ 4 - 2a + b = 0 : 2a + b = -4(1) $\therefore n(3) = \frac{5}{3^2 + 3a + b}$ Type equation here. 9 + 3a + b = 0 : 3a + b = -9(2) 2a + b = -4 (*x* - 1) 3a + b = -9-2a - b = 4(1) 3a + b = -9 (2) by adding (1) and (2) a = -5 by substituting in the first equation -10 + b = -4

4 (a) $n^{-1}(x) = \frac{(x-3)(x^2+2)}{x^2-3x} = \frac{(x-3)(x^2+2)}{x(x-3)}$ domain = $\mathbb{R} - \{0, 3\}$ $n^{-1}(x) = \frac{(x^2 + 2)}{x}$ **(b)** x = (7 - y)(1) $x^2 + y^2 = 25$ (2) Substitute (1) in (2) $(7 - y)^2 + y^2 = 25$ $49 - 14y + y^2 + y^2 = 25$ $2y^2 - 14y + 49 = 25$ $2y^2 - 14y + 24 = 0$ (÷2) $y^2 - 7y + 12 = 0$ (y-4)(y-3)=0y = 4, y = 3substitute in (1) x = 3, x = 4 $S.S. = \{(3, 4), (4, 3)\}$ **5** (a) $n(x) = \frac{x(x+3)}{(x+3)(x-3)} \div \frac{2x}{x+3}$ Domain of $n = \mathbb{R} - \{-3, 3, 0\}$ $n(x) = \frac{x(x+3)}{(x+3)(x-3)} \times \frac{x+3}{2x}$ $n(x) = \frac{x+3}{2(x-3)} = \frac{x+3}{2x-6}$ **(b)** 5x - y = 3 $(\times 3)$ 15x - 3y = 9(1)x + 3y = 7(2) By adding (1), (2) 16*x* = 16 x = 1Substitute in (2) 1 + 3y = 73y = 6*y* = 2 $S.S. = \{(1,2)\}$

factorize

switch to multiplication

simplify

1 Choose the correct answer:

- (1) 4
- **(2)** 1,8
- (3) 1 P (A)
- (4) P (A)
- **(5)** {(5, 2)}
- **(6)** –2
- **2** (a) a = 1 , b = -2 , c = -6

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-6)}}{2(1)}$

- $x = \frac{2 \pm \sqrt{28}}{2}$
- $x = 1 + \sqrt{7} \approx 3.6$, $x = 1 \sqrt{7} \approx -1.6$
- $S.S. = \{3.6, -1.6\}$
- (b) Let the length = L and the width = W

$$L = (W + 4)$$
 (1)
2 (L + W) = 28 (2)
By substituting (1) in (2)
2 (W + 4 + W) = 28
2W + 4 = 14
2W = 10
W = 5 cm
By substituting in (1)
L = 5 + 4 = 9 cm
Area = L × W = 9 × 5 = 45 cm²
3 (a) $\because Z(f) = \{0, 1\}$ by substituting $x = 0$
 $\therefore b = 0$

substituting x = 0

a + 1 + 0 = 0 a = -1

(b)
$$y = (x + 3)$$
 (1)
 $x^{2} + y^{2} - xy = 13$ (2)
Substitute (1) in (2)
 $x^{2} + (x + 3)^{2} - x (x + 3) = 13$
 $x^{2} + x^{2} + 6x + 9 - x^{2} - 3x - 13 = 0$
 $x^{2} + 3x - 4 = 0$
 $(x + 4) (x - 1) = 0$
 $x = -4, x = 1$ substitute in (1)
 $y = -1, y = 4$
S.S. = {(-4, -1), (1, 4)}
(a) $n(x) = \frac{(x - 2)(x^{2} + 2x + 4)}{(x + 3)(x - 2)} \times \frac{x + 3}{(x^{2} + 2x + 4)}$ factorize
Domain of $n = \mathbb{R} - \{-3, 2\}$
 $n(x) = 1$ simplify
(b): $2x - y = 3$ (x2)
 $4x - 2y = 6$ (1)
 $x + 2y = 4$ (2)
By adding (1), (2)
 $5x = 10$
 $x = 2$
Substitute in (2)
 $2 + 2y = 4$
 $2y = 2$
 $y = 1$
S.S. = {(2, 1)}
(b) $n(x) = \frac{x(x + 2)}{(x + 2)(x - 2)} + \frac{x + 3}{(x - 3)(x - 2)}$ factorize
Domain of $n = \mathbb{R} - \{3, 2, -2\}$
 $n(x) = \frac{x(x + 2)}{(x - 2)(x - 3)} + \frac{x + 3}{(x - 3)(x - 2)}$ factorize
Domain of $n = \mathbb{R} - \{3, 2, -2\}$
 $n(x) = \frac{x(x - 2)}{(x - 2)(x - 3)} + \frac{x + 3}{(x - 3)(x - 2)}$ common denominator
 $n(x) = \frac{x^{2} - 3x + (x + 3)}{(x - 2)(x - 3)} + \frac{x^{2} - 3x + 3}{(x - 2)(x - 3)}$ add
 $n(x) = \frac{x^{2} - 3x + (x - 3)}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd
 $n(x) = \frac{x^{2} - 2x + 3}{(x - 2)(x - 3)} = \frac{x^{2} - 2x + 3}{(x - 3)(x - 2)}$ dd

الصف الثالث الإعدادى

الفصل الدراسى الثانى

Geometry Choose the correct answer: (2) 60° (1) radius. (3) 3 (4) Touching internally (6) 108° (5) equal to (a) \therefore MY \cap circle M = {Z} \therefore MY = MZ + ZY \therefore MZ = MX = 5 cm (radii) \therefore MY = 5 + 8 = 13 cm $\therefore (MY)^2 = (13)^2 = 169$ $(MX)^2 = (5)^2 = 25$ $(XY)^2 = (12)^2 = 144$ $(MX)^{2} + (XY)^{2} = 25 + 144 + 169 = (MY)^{2}$ \therefore m \angle MXY = 90° (The converse of the pythagoras' theorem) $\therefore \overline{XY} \perp \overline{MX}$ and \overline{MX} is a radius \therefore XY is a tangent to the circle at X. (b) ·· The two circles are touching internally at A $\therefore A \in MN$, $MN \perp AB$ \therefore MN = 10 - 6 = 4 cm (Touching internally) \therefore Area \triangle BMN = $\frac{1}{2} \times$ MN \times AB $\therefore 24 = 4 \times \frac{1}{2} \times A\tilde{B}$:. AB = 12 cm **3** (a) m (A) = $\frac{1}{2}$ [m (\widehat{CH}) – m(\widehat{BD})] $30^{\circ} = \frac{1}{2} [120 - m(\overrightarrow{BD})]$ $60^{\circ} = 120^{\circ} - m$ (BD) $m(BD) = 60^{\circ}$ $m(\overrightarrow{CH}) + m(\overrightarrow{HD}) + m(\overrightarrow{BD}) + m(\overrightarrow{BC}) = 360^{\circ}$ \therefore m (HD) = m (BC) = $\frac{360^{\circ} - (120^{\circ} + 60^{\circ})}{2}$ $m(HD) = m(BC) = 90^{\circ}$ $\therefore \angle C$ is an inscribed angle subtended by HDB \therefore m (\angle C) = $\frac{1}{2}$ m (\overrightarrow{HDB}) = $\frac{1}{2}$ × 150° = 75° $\ln \Delta ACH$: $m (\angle H) = 180^{\circ} - (30^{\circ} + 75^{\circ}) = 75^{\circ}$ $m (\angle H) = m (\angle HCB) = 75^{\circ}$ and AH = AC(1) $m(\overrightarrow{BC}) = m(\overrightarrow{HD})$ HD = BC(2) By subtracting (2) from (1) AH - AB = AC - BCAD = AB

(b) $\because \overrightarrow{AB}$ is a diameter $\therefore m(\overrightarrow{AD}) + m(\overrightarrow{CD}) + m(\overrightarrow{BC}) = 180^{\circ}$ $m(\angle A) = 30^{\circ}$ $\because m(\overrightarrow{BC}) = 60^{\circ}$ $\because m(\overrightarrow{CD}) + m(\overrightarrow{AD}) = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\therefore m(\overrightarrow{AD}) = m(\overrightarrow{CD}) = \frac{120^{\circ}}{2} = 60^{\circ}$ $m \angle ABD = \frac{1}{2}m(\overrightarrow{AD}) = 30^{\circ}$ $m \angle CDB = \frac{1}{2}m(\overrightarrow{BC}) = 30^{\circ}$ $\because m(\angle DBA) = m(\angle CDB) = 30^{\circ}$ They are alternate $\therefore \overrightarrow{AB} / / \overrightarrow{CD}$

4 (a) ∵ AB = AC

 \therefore m (\angle B) = m (\angle C)

 \therefore m (DHC) = m (HDB)

by subtracting m (HD) from both sides

 \therefore m (DB) = m (HC)

(b) \therefore circumference = 44 cm

 $\therefore 2\pi r = 44$

```
r = 44 \div (2 \times \frac{22}{7}) = 7 \text{ cm}
```

- \therefore AB is a diameter of length 14 cm and BC is a tangent
- \therefore m($\angle B$) = 90°

```
\therefore m(\angleACB) = 30°
```

```
\therefore AC = 28 cm and (BC)<sup>2</sup> = (AC)<sup>2</sup> - (AB)<sup>2</sup>
```

 $BC = \sqrt{28^2 - 14^2} = 14\sqrt{3} \text{ cm}$

 \therefore AB = AD, m (\angle DAB) = 80°

$$\therefore m(\angle D) = m(\angle ABD) = \frac{180^\circ - 80^\circ}{2} = 50^\circ$$

- \therefore m(\angle D) = m (\angle C) = 50°
- \therefore They are both drawn angles on the same base $\overline{\text{AB}}$ and on one side of it.
- \odot They points A, B , C and D have a circle passing through them.

(b) Mention any two cases of the following:

1-If there is a point in the plane equidistant from all vertices.

- 2- If there is an exterior angle its measure = the measure of the niterior angle at the opposite vertex.
- 3 If there are two opposite angles are supplementary.
- 4- If there are two angles equal in measure and drawn on the same base and one side of this base.

1 Choose the correct answer:

(1) MA = 3 cm.	(2) an obtuse	(3) AB	
(4) three non-collinear points	(5) 140°	(6) 30°	
(4) three non-collinear points (2) (a) $\ln \triangle ABE$: $\therefore m (\angle ABE) = m (\angle AEB)$ $\therefore AB = AE$ In the larger circle: $\therefore AB = AE$ $\therefore MX \pm AB$ and $\overline{MY} \pm \overline{AE}$ $\therefore MX = MY$ In the smaller circle: $\therefore MX = MY$ $\therefore MX = MY$ $\therefore MX = MY$ $\therefore MX = MY$ $\therefore CD = ZL$ (b) $\therefore \overline{AB}$ is a diameter in circle M	(5) 140°	(6) 30°	
(b) : AB is a diameter in circle M $(ACP) = 180^{\circ}$			
Draw (\overline{MC}) , (\overline{MD})			
$\therefore m(\widehat{AC}) = 80^{\circ}$			
\therefore m (\angle AMC) = 80°			
∴ m (∠ CME) = 180° – 80° = 100°			
In triangle △ CME:			
\therefore m (\angle ECM) = 180° - (30° + 100°) = 50	0°		
In triangle \triangle CMD:			
\therefore MC = MD radii			
\therefore m (\angle CMD) = 180° - (50° + 50°) = 80	٥		
\therefore m (CD) = 80°			
3 (a) Draw BM			
Proof:			
In Δ MAB:			
$\therefore \overline{MA} = \overline{MB}$ (radii), $\overline{MC} \perp \overline{AB}$			
\therefore m (\angle AMC) = m (\angle BMC) = $\frac{1}{2}$ m (\angle AMB) (1) isosceles triangle properties			
\therefore inscribed \angle ADB and central \angle AMB are subtended at (AB)			
\therefore m (\angle ADB) = $\frac{1}{2}$ m (\angle AMB)	(2)		
\therefore From (1) and (2) we get: m (\angle AMC)	= m (∠ ADB).		

(b) :: CM // AB \therefore m (\angle CMA) = m (\angle MAB) alternate angles \therefore m (\angle CMA) = 2 \times m (\angle CBA) central and inscribed \therefore m (\angle MAB) = 2 \times m (\angle CBA) \therefore m (\angle MAB) > m (\angle CBA) In \triangle ABE: \therefore BE > AE 4 (a) \therefore \overline{AB} , \overline{BC} and \overline{AD} are three tangents to the circle $\therefore AD = AF = 5 cm.$ BD = BE = 4 cmCE = CF = 3 cm \therefore Perimeter of ABC = AB + BC + AC \therefore Perimeter of $\angle ABC = 8 + 9 + 7 = 24$ cm. (b) In ⊿ABC: $\therefore AB = AD$ \therefore m (\angle ABD) = m (\angle MDB) = 30° $m (\angle BAD) = 180^{\circ} - (30^{\circ} + 30^{\circ}) = 120^{\circ}$ $m (\angle A) + m (\angle C) = 180^{\circ}$ (opposite angles) ABCD is a cyclic quadrilateral. (a) In the circle M: : X and y are midpoints of AB and AC respectively \therefore MX \perp AB and MY \perp AC And m (\angle MXA) = m (\angle MYA) = 90° In the quadrilateral AXMY: \therefore m (\angle A) + m (\angle XMY) + m (\angle MXA) + m (\angle MYA) = 360° \therefore m (\angle DME) = 360° - (90 ° + 90 ° + 70°) = 110° $\therefore AB = AC$ $MX \perp AB and MY \perp AC$ \therefore MD = ME = r \therefore MX = MY By subtracting MX from MD and MY from ME we get that: XD = YE (b) \overline{AB} and \overline{AC} are two tangents \therefore AB = AC and m (\angle ABC) = m (\angle ACB) = $\frac{180^{\circ} - 50^{\circ}}{2}$ = 65° :: EBCD is a cyclic quadrilateral. \therefore m (\angle EDC) + m (\angle CBE) = 180° $m (\angle CBE) = 180^{\circ} - 115^{\circ} = 65^{\circ}$ \therefore m (\angle ABC) = m (\angle EBC) = 65° $\therefore \overrightarrow{BC}$ bisects $\angle ABE$ $\therefore \angle$ BEC is an inscribed angle subtended by (BC) and \angle ABC is an angle of tangency subtended by (BC) \therefore m (\angle ABC) = m (\angle BEC) = 65°

$$\therefore$$
 m (\angle EBC) = m (\angle BEC) = 65°

 \therefore CB = CE

1 Choose the correct answer:

(1) equidistant from	(2) $\frac{1}{4}$	(3) 22		
(4	l) Axis of symmetry	(5) zero	(6) 54°		
2 (a	a) \therefore \overrightarrow{XY} and \overrightarrow{XZ} are two tangents				
	$\therefore XY = XZ$				
	And m (\angle xzy) = m (\angle xyz) = $\frac{180^{\circ} - 40^{\circ}}{2}$ = 70°				
	∴ ZYED is a cyclic quadrilateral.				
	∴ m (∠ ZDE) + m (∠ ZYE) = 180°				
	And m (∠ EYZ) = 180° – 110° = 70°	(1)			
	$\therefore \angle$ ZEY is an inscribed angle subtended by (\widetilde{ZY})				
and \angle XZY is an angle of tangency subtended by (\overrightarrow{ZY})					
	\therefore m (\angle ZYE) = m (\angle XZY) = 70°	(2)			
	From (1) and (2) we get that:				
	$m (\angle ZYE) = m (\angle ZEY)$				
(b	b) \overrightarrow{AD} is a tangent:				
$\therefore \angle$ DAC is an angle of tangency subtended by (\widehat{ABC})					
	and m (\angle DAC)= $\frac{1}{2}$ m (\overrightarrow{ABC}) =130°				
	And m (\widehat{ABC}) = 2 × 130° = 260°				
	\therefore m (\overrightarrow{AC}) + m (\overrightarrow{ABC}) = 360°				
	\therefore m (\overrightarrow{AC}) = 360° - 260° = 100°				
	$\therefore \angle B$ is an inscribed angle subtended by (\widehat{AC})				
	\therefore m (\angle B) = $\frac{1}{2}$ m (\widehat{AC}) = 50°				
3 (a	a) $\therefore \stackrel{\frown}{AD}$ is a tangent and, \overline{AB} is the chord of tar	igency.			
	\therefore m (\angle DAB) = m (\angle C)	(1) an inscribed angle a	nd a central angle		
		subtended by the sa	me arc (\widehat{AB})		
	\therefore $\overline{\text{XY}}$ // $\overline{\text{BC}}$, $\overline{\text{AC}}$ is a transversal				
	∴ m (∠ AYX) = m (∠ C) corresponding angle (2) From (1) and (2) and we get: m (∠ DAB) = m (∠ AYX)				
	\therefore m (\angle DAX) = m (\angle AYX)				

 \therefore $\overrightarrow{\text{AD}}$ is a tangent to the circle passing through the points A, X and Y

(b): Proof:

- : XA and XB are two tangent segments.
- $\therefore XA = XB$
- In Δ XAB:
- \therefore m (\angle XAB) = m (\angle XBA), m (\angle X) = 70°
- :. m (\angle XAB) = $\frac{180^{\circ} 70^{\circ}}{2}$ = 55° (1)
- \therefore ABCD is a cyclic quadrilateral, m (\angle C) = 125°
- \therefore m (\angle DAB) = 180° 125° = 55° (2)
- From (1) and (2)
- \therefore m (\angle XAB) = m (\angle DAB) = 55°
- \therefore AB bisects \angle DAX
- \therefore m (\angle XBA) = m (\angle DAB) = 55° alternate angles
- ∴ AD // XB

4 (a) ∵ MA = MB (radii)

- \therefore m (\angle MAB) = m (\angle MBA) = 50°
- \therefore m (\angle AMB) = 180° (50° + 50°) = 80°
- \therefore m (\angle BCA) = 40° an inscribed angle and a central angle subtended by the arc (AB)

(b) :: m (
$$\angle$$
 E) = 30° , m (AC) = 80°

$$\therefore 30^{\circ} = \frac{180^{\circ} - \text{m (BD)}}{2}$$
$$\therefore \text{m (BD)} = 20^{\circ}$$

5 (a) ∵ The inscribed circle of the triangle ABC touches its sides at X , Y and Z

$$\therefore$$
 AX = AZ = 3 cm , BX = BY = 4cm , CZ = CY

$$\therefore CZ = 8 - 3 = 5 cm = CY$$

 \therefore BC = 4 + 5 = 9 cm

(b) :: E is the midpoint of XY

- $\therefore \overline{\mathsf{ME}} \perp \overline{\mathsf{XY}}$
- \therefore \overline{AB} is a common chord of circles M , N
- $\therefore \overline{\mathsf{AB}} \perp \overline{\mathsf{MN}}$
- ∵ m (∠ EMN) = 130°
- \therefore m (\angle C) = 360 (90 +90 + 130) = 50°