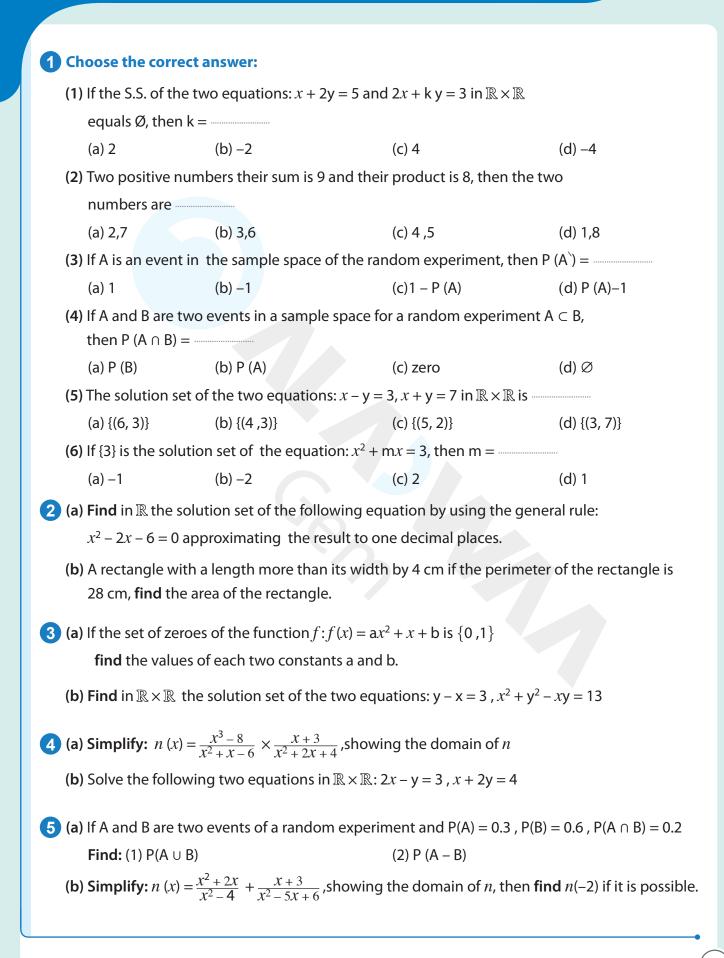


الصف الثالث الإعدادى

الفصل الدراسى الثانى

Algebra

1 Choose the correct answer:


(1) The simplest form of
$$n(x) = \frac{x+3}{x-3} \times \frac{x-3}{x^2-9}$$
 is _______
(a) $\frac{1}{x+3}$ (b) $\frac{1}{x-3}$ (c) $x+3$ (d) $x-3$
(2) If A and B are two mutually exclusive events, then P(A U B) = _______
(a) P(B) (b) P(A ∩ B) (c) P(A) + P (B) (d) P(A)
(3) The set of zeroes of the function $f(x) = x(x^2 - 2x + 1)$ is _______
(a) $\{0,1\}$ (b) $\{0,-1\}$ (c) $\{0\}$ (d) $\{1\}$
(4) The ordered pair which satisfies each of the following equations: $xy = 2$,
 $x-y = 1$ is _______
(a) $\{1,2\}$ (b) $\{2,1\}$ (c) $\{1,1\}$ (c) $\{1,1\}$ (d) $\{3,1\}$
(5) The domain of the function $f:f(x) = \frac{2-x}{7}$ is ______
(a) $\|x-\{7\}$ (b) $\|x-\{2,7\}$ (c) $\|x-\{2\}$ (d) $\|x\|$
(6) The domain of $n: n(x) = \frac{3x+4}{x^2+25} + \frac{x-2}{x^2+7}$ is
(a) $\|x-\{5\}$ (b) $\|x-\{-5,5,-7\}$ (c) $\|x\|$ (d) $\|x-\{-5,5\}$
(a) $\|x-\{5\}$ (b) $\|x-\{-5,5,-7\}$ (c) $\|x\|$ (d) $\|x-\{-5,5\}$
(a) $\|x-\{-5,5\}$ (b) $\|x-\{-5,5,-7\}$ (c) $\|x\|$ (d) $\|x-\{-5,5,5\}$
(a) Simplify: $n(x) = \frac{x}{x-2} + \frac{x+3}{x^2-x-2}$, showing the domain of n
(b) Solve the following two equations in $\|x| \times \|$: $2x = 1 - y, x + 2y = 5$
(a) If A and B are two events of a random experiment and $P(A) = 0.7$, $P(A \cap B) = 0.3$, find: $P(A - B)$
(b) Simplify: $n(x) = \frac{x^2+x}{x^2-1} - \frac{x+5}{x^2+4x-5}$, showing the domain of n
(c) If $n_1(x) = \frac{x^2}{2x+6}, n_2(x) = \frac{x^2+3x}{x^2+6x+9}$, prove that: $n_1 = n_2$:
(b) If $n_1(x) = \frac{2x}{2x+6}, n_2(x) = \frac{x^2+3x}{x^2+6x+9}$, prove that: $n_1 = n_2$:
(c) (a) If $n(x) = \frac{x-2}{x+1}$
Find: (1) the domain of n^{-1} (2) n^{-1} (3)
(3) If $n^{-1}(x) = 2$, find the value of x .
(b) Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations: $x - y = 1, x^2 - y^2 = 25$


(2)

1 Choose the correct answer:

(1) The	(1) The set of zeroes of the function $f: f(x) = x (x^2 - 1)$ is							
(a)	{0}	(b) {0, -1}	(c) {0,1,-1}	(d) {0,1}				
(2) The	(2) The set of zeroes of the function $f: f(x) = \frac{x^2 - 9}{x - 2}$ is							
(a)	$\mathbb{R}-\{2\}$	(b) {-3, 3}	(c) {2}	(d) {3, -3, 2}				
(3) If <i>n</i>	(3) If $n(x) = \frac{x-2}{x+5}$, then the domain of n^{-1} is							
(a)	R	(b) ℝ – {2}	(c) \mathbb{R} – {2, –5}	(d) $\mathbb{R} - \{-5\}$				
(4) The	(4) The common domain of the two fractions $\frac{2}{x^2-1}$ and $\frac{5x}{x^2-x}$ is							
(a)	$\mathbb{R}-\{1\}$	(b) $\mathbb{R} - \{0, 1\}$	$(c)\mathbb{R}-\left\{0,1,-1\right\}$	$(d)\mathbb{R}{-}\{1,{-}1\}$				
(5) The	(5) The S.S. of the two equations: $x - y = 0$, $x^2 + y^2 = 18$ in $\mathbb{R} \times \mathbb{R}$ is							
(a)	{(3, 3)}	(b) {(-3, -3)}	(c) {(3, -3), (-3, 3)}	(d) {(3, 3), (-3, -3)}				
(6) The set of zeroes of the function $f: f(x) = x^2 - 25$ is								
(a)	{5}	(b){-5}	(c) {-5, 5}	(d) Ø				
(a) If A and B are two events of a random experiment,								
the	then find:							
(1)	(1) P (A \cap B) $\begin{pmatrix} \times 1 & (\times 2) & \times 5 \\ & & & & & \end{pmatrix}$							
(2)	(2) P (A – B)							
(3)	(3) The probability of non-occurrence of event A							
(b) Simplify: $n(x) = \frac{x-3}{x^2 - 7x + 12} - \frac{4}{x^2 - 4x}$, showing the domain of <i>n</i> .								
3 (a) Fin	(a) Find in \mathbb{R} the solution set of the following equation by using the general rule:							
$3x^2 - 5x - 4 = 0$ approximating the result to the nearest two decimal places.								
(b) If the domain of the algebraic fraction $n: n(x) = \frac{x+2}{x^2 + ax + b}$ is $\mathbb{R} - \{2, 3\}$.								
Find the value of a and b.								
4 (a) If $n(x) = \frac{x^2 - 3x}{(x - 3)(x^2 + 2)}$, then find $n^{-1}(x)$ in the simplest form , showing the domain of n^{-1}								
(b) Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations: $x + y = 7$, $x^2 + y^2 = 25$								
5 (a) Simplify: $n(x) = \frac{x^2 + 3x}{x^2 - 9} \div \frac{2x}{x + 3}$, showing the domain of <i>n</i>								
(b) Solve the following two equations in $\mathbb{D} \times \mathbb{D} \cdot r + 2v - 7$ Sr. $v = 2$								

(b) Solve the following two equations in $\mathbb{R} \times \mathbb{R}$: x + 3y = 7, 5x - y = 3

الصف الثالث الإعدادى

الفصل الدراسى الثانى

Geometry							
1 Choose the correct answer:							
(1) is a line segment with one endpoint at the centre of the circle and the other endpoint on the circle.							
(a) Diameter	(b) Radius	(c) Chord	(d) Axis of symmetry				
(2) In the opposite If m (\angle BAC) = 3	D A 60°						
(a) 15° (c) 30°		(b) 60° (d) 90°	C B				
(3) The length of the arc opposite to a central angle of measure 30° in a circle of circumference 36 cm = cm							
(a) 18	(b) 9	(c) 4.5	(d) 3				
(4) M and N are two circles of radii lengths 9 cm, and 4 cm respectively MN = 5 cm, then the two circles are							
(a) touching ext	ernally	(b) intersecting					
(c) touching inte	ernally	(d) distant					
(5) The quadrilateral is cyclic if there is an exterior angle at any of its vertices							
(a) greater than	(b) complements	(c) supplements	(d) equal to				
(6) In the opposite	-		A				
	n (\angle ABD) = 36°, then m						
(a) 140°		(b) 54°	36° B				
(c) 70°		(d)108°	D				
(a) In the opposite	figure:						
	M is a circle with radius length 5 cm $\begin{pmatrix} M \\ M \end{pmatrix}$						
$XY = 12 \text{ cm}, \overline{MY}$	$XY = 12 \text{ cm}, \overline{MY} \cap \text{circle } M = \{Z\} \text{ and } ZY = 8 \text{ cm}.$						
Prove that: \overline{XY} is a tangent to circle M at X.							
(b) M and N are two circles with radii lengths of 10 cm and 6 cm respectively and they are touching internally at A, \overline{AB} is a common tangent for both at A. If the area of the triangle BMN = 24 cm ² . Find the length of \overline{AB} .							

(a) In the opposite figure:

m (\angle A) = 30°, m (\widehat{HC}) = 120°, m (\widehat{BC}) = m (\widehat{DH}) (1) **Find:** m (\widehat{BD}) the minor)

(2) **Prove that:** AB = AD

(b) In the opposite figure:

AB is a diameter in the circle M

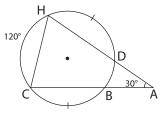
, C \in the circle M, m (\angle CAB) = 30°

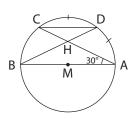
, D is midpoint of \overrightarrow{AC} , $\overrightarrow{DB} \cap \overrightarrow{AC} = \{H\}$

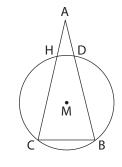
- (1) Find: m (\angle BDC) and m (\widehat{AD})
- (2) Prove that: AB // DC

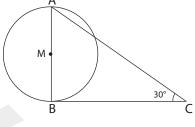
(a) In the opposite figure:

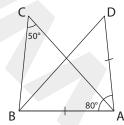
ABC is a triangle in which AB = AC, \overline{BC} is a chord in the circle M, if \overline{AB} and \overline{AC} cut the circle at D and H respectively. **Prove that:** m (\overline{DB}) = m (\overline{HC})


(b) In the opposite figure:


A circle M of circumference 44 cm, \overline{AB} is a diameter, \overline{BC} is a tangent at B and m ($\angle ACB$) = 30° Find the length of $\overline{BC} \left(\pi = \frac{22}{7}\right)$


(a) In the opposite figure:


AB = AD, m ($\angle DAB$) = 80°, m ($\angle C$) = 50° **Prove that:** The points A, B, C and D have a circle passing through them.


(b) Mention two cases of the cyclic quadrilateral.

1 Choose the correct answer:								
(1) If M is a circle, it	(1) If M is a circle, its diameter length is 6 cm, and A is a point on the circle, then							
(a) MA > 6 cm	(b) MA = 6 cm	(c) MA = 3 cm	(d) MA < 3 cm					
(2) The type of the inscribed angle which is opposite to an arc greater than a semicircle is								
angle.								
(a) an acute	(b) an obtuse	(c) a right.	(d) a straight					
(3) \overline{AB} and \overline{CD} are two chords in a circle, $AB = 5$ cm and $CD = 3$ cm, then the chord which is nearer to the centre of the circle is								
(a) AB		(b) CD						
(c) both are equ	al	(d) cannot be det	(d) cannot be determined					
(4) We can identify the circle if we are given								
(a) three colline	ar points	(b) two points						
(c) three non-co	(c) three non-collinear points (d) one point							
(5) If the measure of an angle of tangency = 70°, then the measure of the central angle subtended by the same arc equals								
(a) 35°	(b) 70°	(c) 140°	(d) 105°					
(6) The measure of the inscribed angle which is drawn in $\frac{1}{6}$ of a circle equals								
(a) 240°	(b) 120°	(c) 60°	(d) 30°					
	2 (a) Two concentric circles M, AB is a chord in the larger circle							
	and intersects the smaller circle at C and D, $z \neq z$							
	AE is a chord in the larger circle and intersects $\begin{pmatrix} y \\ M \end{pmatrix}$							
the smaller circle at Z and L, $\overline{MX} \perp \overline{AB}$ and $\overline{MY} \perp \overline{AE}$								
If m (\angle ABE) = m (\angle AEB), then prove that: CD = ZL.								
(b) In the opposite figure:								
\overrightarrow{AB} is a diameter in the circle M, $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$,								
m (\angle AEC) = 30°, m (\overrightarrow{AC}) = 80° E B $\begin{pmatrix} 30^{\circ} \\ B \\ M \end{pmatrix}^A$								
Find: m (CD)	Find: m (CD)							

(a) In the opposite figure:

 \overline{AB} is a chord of circle M, $\overline{MC} \perp \overline{AB}$. **Prove that:** m (\angle AMC) = m (\angle ADB)

(b) In the opposite figure:

 \overline{AB} is a chord in circle M, $\overline{CM} / / \overline{AB}$, $\overline{BC} \cap \overline{AM} = \{E\}$, **Prove that:** BE > AE.

(a) In the opposite figure:

A circle is drawn touching the sides of a triangle ABC , \overline{AB} , \overline{BC} , \overline{AC} at D, E, F, AD = 5 cm, BE = 4 cm, CF = 3 cm Find the perimeter of \triangle ABC

(b) In the opposite figure:

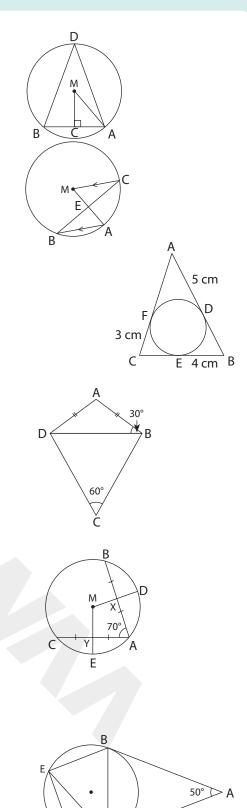
ABCD is a quadrilateral in which AB = AD, m ($\angle ABD$) = 30°, m ($\angle C$) = 60° **Prove that:** ABCD is a cyclic quadrilateral.

(a) In the opposite figure:

AB and AC are two chords equal in length at the circle M

, X is the midpoint of \overline{AB}

, Y is the midpoint of \overline{AC} , m ($\angle A$) = 70°

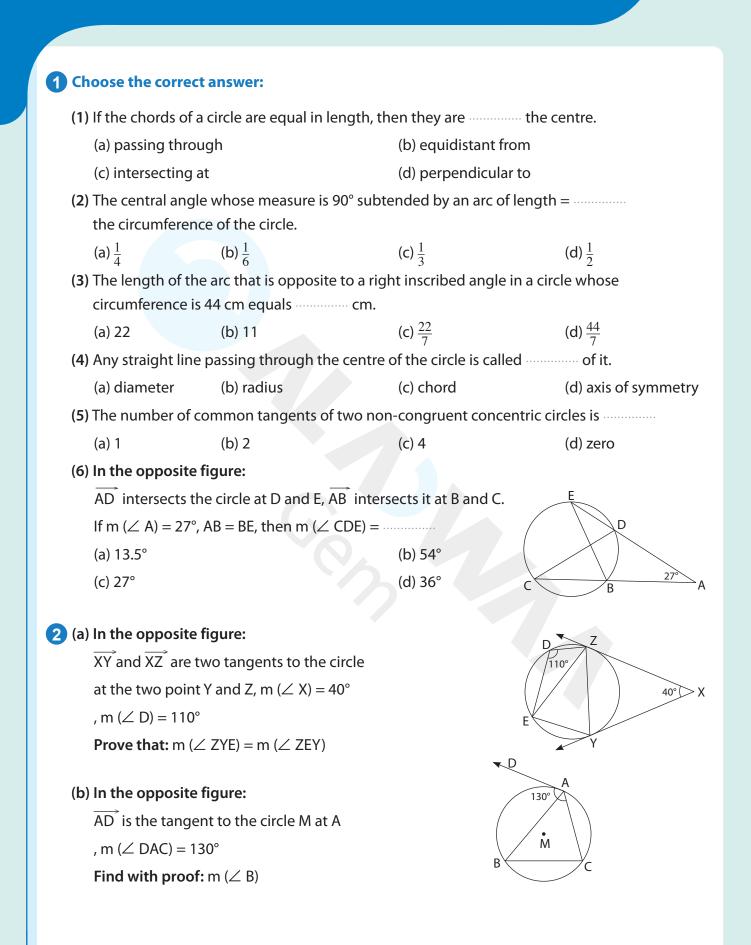

(1) **Find:** m (∠ DME)

(2) Prove that: XD = YE

(b) In the opposite figure:

 \overline{AB} and \overline{AC} are two tangent-segments to the circle at B and C , m (\angle A) = 50°, m (\angle D) = 115° **Prove that:**

(1) $\overrightarrow{\mathsf{BC}}$ bisects $\angle \mathsf{ABE}$



5

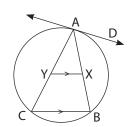
С

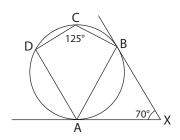
(a) ABC is a triangle inscribed in a circle,

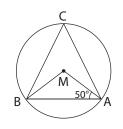
 \overrightarrow{AD} is a tangent to the circle at A, X $\in \overrightarrow{AB}$, Y \in AC where \overrightarrow{XY} // \overrightarrow{BC} **Prove that:**

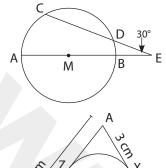
 $\overline{\text{AD}}$ is a tangent to the circle passing through the points A, X and Y .

(b) \overline{XA} and \overline{XB} are two tangents to the circle at A and B

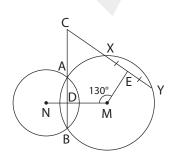

 $m (\angle AXB) = 70^\circ, m (\angle DCB) = 125^\circ$


Prove that:


First: \overrightarrow{AB} bisects \angle DAX.


Second: AD // XB.

4 (a) M is a circle, m (\angle MAB) = 50°, find m (\angle C).



(b) In the opposite figure:

 \overrightarrow{AB} is a diameter in the circle M, $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$, m ($\angle E$) = 30°, m (\overrightarrow{AC}) = 80°, find m (\overrightarrow{BD})

(a) In the opposite figure:

An inscribed circle of triangle ABC touches its sides at X, Y and Z. If AX = 3cm, XB = 4 cm, AC = 8 cm, find the length of \overline{BC} .

(b) In the figure opposite:

M and N are two intersecting circles where circle M \cap circle N equal {A, B} $\overrightarrow{YC} \cap \overrightarrow{BA} = \{C\}$ If E is the midpoint of \overrightarrow{XY} , m (\angle EMN) = 130°, **find** m (\angle C).